Polar and solvation effects in reactions of oxygen atoms and hydroxyl and alkoxyl radicals with oxygen-containing compounds

E. T. Denisov* and T. G. Denisova

Institute of Chemical Physics in Chernogolovka, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region, Russian Federation.

Fax: +7 (095) 265 5714

Experimental data on the activation energies of reactions of H-abstraction from oxygencontaining compounds by oxygen atoms and hydroxyl and alkoxyl radicals in the gas and liquid phases have been analyzed by means of the parabolic model of the transition state. The contribution of polar interaction to the activation energies of the reactions has been calculated. The contribution of solvation to the activation energy has been calculated by comparison of the reaction parameters of the respective reaction in the liquid and gas phases.

Key words: alkoxyl radical, oxygen atom, hydroxyl radical, rate constant, parabolic model, transition state, polar effect, radical abstraction, solvation, activation energy.

A great deal of research is devoted to the effect of polarity in chemical reactions, in particular, the influence of a polar medium on radical reactions has been considered in monographs. 1,2 Difficulties arise in the comparison of the reactivity of polar and nonpolar molecules toward free radicals. The insertion of a polar group into the hydrocarbon molecule changes the strength of the neighboring C—H bonds ($D_{\rm R-H}$) affecting, clearly, the heat of the reaction.

The parabolic model of radical abstraction 3,4

$$X' + RH \rightarrow XH + R'$$

treats the transition state as the result of the interception of two unperturbed potential curves (Fig. 1). One of the curves represents the dependence of the potential energy U_i on the amplitude of atomic vibration along the breaking bond (i), and the other, the dependence of U_i on the amplitude of atomic vibration along a forming bond (f). The oscillations of the atoms are, probably, harmonic in character, so, $U_i^{1/2} = b_i x_i$ and $U_i^{1/2} = b_f x_f$, and the atoms taking part in an elementary act are except the attacked H atom, at the fixed distance r_e (see Fig. 1). The transition states are assumed to be the result of the interception of the two undisturbed potential curves. Activation energy of the elementary act of H-abstraction may be expressed through the physical characteristics of the breaking and forming bonds, and, depending on the type of these bonds, all various reactions of radical abstraction can be divided into classes. Each class is characterized by two coefficients

$$b_i = \pi v_i (2\mu_i)^{1/2}$$
 and $b_f = \pi v_f (2\mu_f)^{1/2}$,

where v_i and v_f are the frequencies of the valence vibrations of the breaking and forming bonds, and μ_i and

 μ_f are the effective masses of the atoms forming these bonds. Each elementary reaction is further defined by enthalpy ΔH_e :

$$\Delta H_o = D_i - D_f + 0.5hL(v_i - v_f), \tag{1}$$

where D_i and D_f are the energies of breaking and forming bonds, and h and L are Planck's constant and Avogadro's number, respectively, as well as by the activation energy E_e connected with the experimentally determining E value by means of the relation:

$$E_e = E + 0.5(hv_i L - RT).$$
 (2)

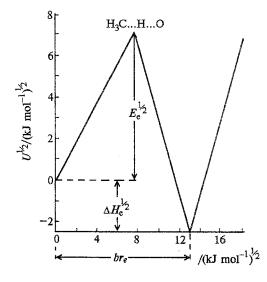


Fig. 1. Energetic profile of the $O + CH_4$ reaction (parabolic model).

RH	$-\Delta H_e$ /kJ mol ⁻¹	k(298 K) /L mol ⁻¹ s ⁻¹	Number of measu-rements (n)	E_e /kJ mol ⁻¹	<i>br_e</i> /(kJ mol ⁻¹) ^{1/2}	ΔE_{μ}
CH ₄	6.0	$6.1 \cdot 10^3$	8	52.80	13.11	0.0
CH ₃ OH	36.6	$4.61 \cdot 10^{6}$	4	35.65	12.55	-4.6
CH ₃ CH ₂ OH	39.9	$3.24 \cdot 10^{7}$	3	29.80	11.92	-9.5
(CH ₃) ₂ CHOH	50.2	$4.0 \cdot 10^{7}$	1	27.57	12.08	-8.2
(CH ₃) ₃ COH	14.0	$3.16 \cdot 10^6$	2	39.30	11.92	-9.5
$(CH_3)_2O$	43.4	$2.94 \cdot 10^{7}$	3	32.77	12.48	-5.1
(CH3CH2)2O	48.7	$7.3 \cdot 10^{7}$	1	29.51	12.28	-6.7
CH ₂ O	63.0	9.67 · 10 ⁷	6	27.10	12.55	-4.6
CH ₃ CHO	67.1	$2.65 \cdot 10^{8}$	3	22.85	12.12	-7.9
CH ₃ COCH ₃	38.3	$4.47 \cdot 10^5$	5	43.15	13.55	-9.4
CH ₃ COCH ₂ CH ₃	46.2	$6.34 \cdot 10^6$	2	33.85	12.74	-16.1
(CH ₃ CH ₂) ₂ CO	46.2	$1.02 \cdot 10^{7}$	2	34.39	12.81	-15.6
c-C ₆ H ₁₀ O	49.8	$1.45 \cdot 10^{7}$	2	33.52	12.85	-15.2
CH ₃ C(O)OCH ₃	38.3 .	$6.20 \cdot 10^5$	3	40.62	13.25	1.2
CH ₃ C(O)OCH ₂ CH ₃	46.3	$3.23 \cdot 10^6$	2	35.52	12.96	-1.2

Table 1. Kinetic parameters of the reaction of oxygen atoms with oxygen-containing compounds in the gas phase⁶

Each group of reactions of one class is characterized by the parameter $br_e = b_i r_e$ which is calculated using the parameter E_e and ΔH_e parameters for the separate reaction according to the following expression $(\alpha = b_i/b_i)$:

$$br_{\rho} = \alpha (E_{\rho} - \Delta H_{\rho})^{1/2} + E_{\rho}^{1/2}.$$
 (3)

If the interaction of polar groups occurs in the transition state, this will affect the value of br_e . The contribution of the polar interaction to the activation energy can be estimated by comparing between the parameter $(br_e)_{\mu}$ for the reaction of a radical with a polar compound $R_{\mu}H$ and the parameter $(br_e)_{RH}$ of its nonpolar analog (for example, for MeOH and CH₄). This contribution was estimated according to the following expression:⁵

$$\Delta E_{\mu} = [(br_e)^2_{\mu} - (br_e)^2_{RH}]/(1 + \alpha)^2. \tag{4}$$

It follows from Eq. (4) that the contribution of the polar interaction to the activation energy depends on the parameter r_e as well as on the coefficients b_i and b_f ($\alpha = b_i/b_f$).

Results and Discussion

The data on the gas phase reactions (rate constants and activation energies) were taken from the database.⁶ In order to decrease the scatter in the data, the value of the activation energy was calculated using the rate constant k and the pre-exponential factor A according to the formula:

$$E = RT \cdot \ln(A/k).$$

In the case of O + RH, the pre-exponential factor A is 4×10^9 L mol⁻¹ s⁻¹ in the calculation for one reacting C-H bond. The energies of the C-H bond which are necessary for the calculation of ΔH_e are taken from

Refs. 7, 8. In the case of this reaction, the coefficient $\alpha = b_i/b_f = 0.774$. The initial data and results of the calculation of br_e and ΔE_{μ} for reactions of atomic oxygen are given in Table 1. The ΔE_{μ} values were calculated according to Eq. (4). For alcohol, aldehydes and ethers the comparison with the reaction of the C-H bond of a paraffinic hydrocarbon was carried out: $(br_e)_{RH} = 13.11 \text{ (kJ mol}^{-1})^{1/2}$. Ketones were compared with olefins: $(br_e)_{RH} = 14.30 \text{ (kJ mol}^{-1})^{1/2}$. From the column of ΔE_{μ} values one can see that the polar interaction in all of the considered reactions decreases the activation barrier, and only for esters is this effect absent (the error in the calculation of ΔE_{μ} is 1.5 kJ mol⁻¹). Probably, this is connected with the competitive attack of oxygen atoms on the alcohol or acid residues, and different br, parameters (in other reactions) are typical for these reaction sites. The data obtained make it possible to estimate the contributions of the polar effect ΔE_{μ} and the enthalpy changes tjat occur when functional groups are inserted into a molecule of a particular hydrocarbon. This contribution of enthalpy change to activation energy may be represented as the difference $\Delta E = E_{e\mu} - 49$ (kJ mol⁻¹), where $E_{e\mu}$ is the activation energy of the reaction of an O atom with given compounds, and ethane is the hydrocarbon used for comparison (for which $E_e = 49 \text{ KJ mol}^{-1}$ calculated according to Eq. (3), parameter $br_e = 13.11$ (kJ mol⁻¹)^{1/2} and $\Delta H_e = -14$ (kJ cal⁻¹)^{1/2}. The results of the calculation of the energies (kJ mol⁻¹) and μ (Debye) are given

Table 2. Kinetic parameters of the reaction of hydroxyl with oxygen-containing compounds in the gas phase⁶ and in aqueous solution⁹

RH	$-\Delta H_e$ /kJ mol ⁻¹	Medium	k·10 ⁻⁸ (298 K) /L mol ⁻¹ s ⁻	Number of measurements (n)	E_e /kJ mol $^{-1}$	$\frac{br_e}{(kJ \text{ mol}^{-1})^{1/2}}$	$^{\Delta E_{ m \mu}}$ /kJ mol $^{-1}$
CH ₄	64.4	Gas	0.047	15	36.30	13.95	0
CH ₄	64.4	H_2O	1.1	2	32.44	13.49	0
CH ₃ CH ₃	84.4	Gas	1.6	33	28.59	13.74	0
CH ₃ CH ₃	84.4	H_2O	18.0	1	26.57	13.48	0
CH ₃ CH ₂ CH ₃	100.3	Gas	5.8	6	22.67	13.52	0
CH ₃ CH ₂ CH ₃	100.3	H_2O	36.0	1	22.13	13.44	0
$CH_3(CH_2)_2CH_3$	99.5	$H_2^{2}O$	46.0	1	23.24	13.57	0
CH ₃) ₃ CH	110.6	Gas	13.5	7	18.85	13.33	0
-C ₅ H ₁₀	107.4	Gas	31.1	8	22.49	13.75	0
CH ₃) ₄ C	84.4	Gas	5.4	9	27.29	13.57	0
C ₆ H ₅ CH ₃	134.6	Gas	1.2	2	25.75	15.08	0
:-C ₆ H ₁₀	154.6	H_2O	88.0	1	21.63	15.14	0
CH ₃ OH	107.0	Gas.	5.6	3	23.75	13.91	2.4
CH₃OH	107.0	H_2O	9.7	9	26.38	14.26	6.6
CH ₃ CH ₂ OH	110.3	Gas	17.0	10	20.00	13.48	-1.3
CH ₃ CH ₂ OH	110.3	H_2O	19.0	14	23.71	14.01	4.4
CH ₃) ₂ CHOH	120.6	Gas	35.3	4	16.47	13.31	-2.7
CH ₃) ₂ CHOH	120.6	H ₂ O	19.0	5	22.00	14.12	5.3
CH ₃) ₃ COH	84.4	Gas	7.0	1	25.92	13.39	-2.0
CH ₃) ₃ COH	84.4	H ₂ O	6.0	3	30.29	14.13	5.4
CH ₂ OHCH ₂ OH	117.5	H ₂ O	18.0°	4	25.56	14.50	8.7
CH ₃ (CHOH) ₂ CH ₃	120.6	H ₂ O	13.0	i	24.65	14.49	8.6
CH ₂ OHCHOHCH ₂ OH	120.6	H ₂ O	19.0	1	22.00	14.12	5.3
CH ₂ OH(CH ₂) ₂ CH ₂ OH	110.3	H_2O	32.0	î	24.14	14.07	4.9
CH ₂ OH(CH ₂) ₂ CH ₂ OH	110.3	H_2O	36.0	î	23.84	14.03	4.5
CH ₃ OCH ₃	113.8	Gas	19.6	2	22.37	13.95	2.8
CH ₃ OCH ₃	113.8	H ₂ O	10.0	4	28.02	14.70	10.6
(CH ₃ CH ₂) ₂ O	119.1	Gas	80.8	2	17.85	13.47	-1.4
$(CH_3CH_2)_2O$	119.1	H ₂ O	36.0	2	23.84	14.33	7.2
	116.9	H ₂ O	28.0	2	26.18	14.57	9.4
2-[O(CH ₂) ₂ O(CH ₂) ₂]	133.4	Gas	53.2	11	17.17	13.84	1.8
CH ₂ O	133.4	H ₂ O	10.0	2	25.30	14.98	13.2
CH ₂ O	137.5	Gas	93.0	3	16.16	13.81	1.5
CH₃CHO	137.5	H ₂ O	7.3	1	24.36	14.99	13.2
CH₃CHO				3	16.16		
CH₃COCH₃	108.7	Gas	93.0	4		13.81	-11.4
CH ₃ COCH ₃	108.7	H ₂ O	1.1		27.79 19.86	14.50	-5.9
CH ₃ COCH ₂ CH ₃	116.6	H ₂ O	9.0	1		13.68	-13.1
CH ₃ CH ₂) ₂ CO	116.6	H ₂ O	14.0	1	20.48	13.78	-12.3
HCOOH	98.6	H ₂ O	1.3	2	28.64	14.26	6.6
CH ₃ COOH	111.0	H ₂ O	0.16	3	30.85	14.96	-1.7
CH ₂ (COOH) ₂	122.1	H ₂ O	0.2	2	29.29	15.13	0
CH ₃ C(O)OCH ₃	108.7	Gas	1.6	2	26.86	14.38	6.6
CH ₃ C(O)OCH ₃	108.7	H ₂ O	1.2	1	31.56	14.97	13.1
CH ₃ C(O)OCH ₂ CH ₃	116.7	H ₂ O	4.0	1	27.57	14.76	11.1
CH ₃ CH ₂ C(0)OCH ₂ CH ₃		H ₂ O	8.7	1	25.65	14.50	8.7
$CH_3CH_2OC(O)CH_2]_2$	116.7	H_2O	7.8	1	27.64	14.77	11.2

The ΔE_{μ} row lists in brackets the % ΔE_{μ} in the total decrease in activation energy, which varies from 26 to 62 %, *i.e.* the contribution of the polar interaction of the reactive center O...H...C with a polar group is comparable to the decrease in the activation energy due to the change in the dissociation energy of the reacting C—H bond. The absolute value of ΔE_{μ} increases as the dipole moment of the functional group increase, and, probably, the electrostatic interaction contributes significantly to the decrease in activation energy. It is

evident from the comparison of the changes of the relative values of r_e that the polar interaction causes the transition state to be more compact ($\Delta r_e < 0$). A reaction of the type:

HO' +RH
$$\rightarrow$$
 H₂O + R'

was studied in the gas⁶ and in the liquid⁹ phases, which made it possible to compare of the polar effect in the two phases. The results of the calculation of br_e and ΔE_{μ}

Table 3. Kinetic parameters of the reactions of alkoxyl radicals with oxygen-containing compounds

RH	RO.	Medium	$-\Delta H_e$ /kJ mol ⁻¹	E_e /kJ mol ⁻¹	br_e /(kJ mol ⁻¹) $^{1/2}$	ΔE_{μ} /kJ mol ⁻¹	Number of measure-ments (n)
CH ₄	CH ₃ O	Gas phase	8.5	57.2	14.05	0	1
C_4H_{10}	$(CH_3)_3CO$.	Gas phase	40.7	42.2	13.90	0	1
CH₃OH	CH ₃ O.	Gas phase	51.1	34.9	13.33	-6.6	1
CH ₃ OH	CH ₃ O.	Liq. phase	45.3	39.5	13.62	0.7	2
CH ₃ OH	(CH3)3CO.	Liq. phase	48.2	39.6	13.75	1.8	5
CH ₃ CH ₂ OH	(CH ₃) ₃ CO'	Liq. phase	51.5	35.4	13.36	-1.5	2
$CH_3(CH_2)_2OH$	$(CH_3)_3CO$	Liq. phase	51.5	35.2	13.35	-1.5	1
(CH ₃) ₂ CHOH	(CH ₃) ₃ CO	Liq. phase	61.8	32.0	13.36	-1.5	5
(CH ₃) ₃ COH	$(CH_3)_3CO$.	Liq. phase	25.6	50.6	14.02	4.4	1
c-C ₆ H ₁₁ OH	$(CH_3)_3CO$.	Liq. phase	68.6	30.2	13.41	-1.1	3
C ₆ H ₅ CH ₂ OH	$(CH_3)_3CO$.	Liq. phase	80.2	23.3	13.03	-8.8	2
(C ₆ H ₅) ₂ CHOH	$(CH_3)_3CO$.	Lig. phase	98.2	22.9	13.55	-4.5	3
$(C_6H_5)_2$ CHOH	C ₆ H ₅ CH ₂ O		94.5	21.2	13.17	-7.7	1
$(C_6H_5)_2$ CHOH	c -C ₆ H ₁₁ \tilde{O}	Liq. phase	94.5	22.2	13.31	-6.5	1
C ₆ H ₅ (CH ₃)CHOH	$(CH_3)_3CO$.	Liq. phase	90.2	26.1	13.69	-3.4	i
CH ₃ COCH ₃	$(CH_3)_3CO$.	Gas phase	49.9	30.3	12.67	-17.8	1
CH ₃ COCH ₃	$(CH_3)_3CO$.	Liq. phase	49.9	34.1	13.17	-10.6	1
c-C ₆ H ₁₀ O	$(CH_3)_3CO$	Liq. phase	61.4	37.2	14.00	-3.6	3
C ₆ H ₅ CH ₂ COCH ₃	$(CH_3)_3CO$.	Liq. phase	87.9	27.7	13.82	-5.2	1
~	$(CH_3)_3CO$.	Liq. phase	65.1	28.5	13.08	-11.3	1
c-C ₆ H ₁₁ COCH ₃	CH ₃ O.	Gas phase	77.5	32.0	14.03	0	1
CH ₂ O	(CH3)3CO.	Gas phase	74.6	28.0	13.40	-4.2	1
CH ₂ O	CH ₃ O.	Gas phase	81.6	20.2	12.56	-12.2	2
CH ₃ CHO			78.7	27.8	13.53	-3.1	1
CH ₃ CHO	(CH ₃) ₃ CO.	Gas phase	94.5	12.4		-19.0	
C ₆ H ₅ CHO	CH ₃ O.	Liq. phase			11.76		1
(CH ₃ CH ₂) ₂ O	(CH ₃) ₃ CO.	Liq. phase	60.3	32.3	13.34	-1.7	4
[(CH ₃) ₂ CH] ₂ O	(CH ₃) ₃ CO.	Liq. phase	70.6	32.7	13.81	2.3	1
$[(CH_3)_3C]_2O$	(CH ₃) ₃ CO.	Liq. phase	25.6	44.7	13.36	-1.5	1
(CH ₃) ₃ COCH ₃	(CH ₃) ₃ CO	Liq. phase	55.0	39.0	13.96	3.5	2
$CH_2(OR)_2$	$(CH_3)_3CO$.	Liq. phase	65.0	28.7	13.07	-3.9	8
RCH(OR) ₂	$(CH_3)_3CO$.	Liq. phase	84.8	26.8	13.50	-0.4	28
c-[O(CH ₂) ₄]	$(CH_3)_3CO$.	Liq. phase	58.1	32.3	13.25	-2.4	3
c-[O(CH ₂) ₅]	$(CH_3)_3CO$.	Liq. phase	65.0	33.5	13.71	1.4	2
c-[OCH(OR)(CH ₂) _n]	$(CH_3)_3CO$.	Liq. phase	84.8	26.9	13.62	0.6	5
c-[OCH(R)O(CH ₂) _n]	$(CH_3)_3CO$.	Liq. phase	84.8	26.3	13.52	-0.2	7
c-[OCH(R)O(CH ₂) _n]	c-C ₆ H ₁₁ O	Liq. phase	83.1	29.8	13.92	3.2	1
c-[OCH ₂ O(CH ₂) _n]	$(CH_3)_3CO$.	Liq. phase	65.0	13.2	13.47	-0.6	6
c-[OCH ₂ O(CH ₂) ₅]	c-C ₆ H ₁₁ O	Liq. phase	63.3	33.6	13.64	0.8	1
HC(O)OCH ₃	$(CH_3)_3CO$.	Liq. phase	37.3	34.8	12.65	-7.2	1
CH ₃ C(O)OCH ₂ CH ₃	$(CH_3)_3CO$	Liq. phase	57.9	42.3	14.47	8.0	1
$CH_3C(O)OC_6H_5$	$(CH_3)_3CO$.	Liq. phase	47.0	39.9	13.74	1.7	2
c-C ₆ H ₁₁ OC(O)CH ₃	$(CH_3)_3CO$.	Liq. phase	57.1	29.2	12.79	-6.1	3
$(C(O)OCH_3)_2$	$(CH_3)_3CO$.	Liq. phase	49.9	44.9	14.45	7.8	1
$C_6H_5CH_2C(O)OCH_3$	(CH ₃) ₃ CO.	Liq. phase	66.0	29.2	13.17	-3.1	1
$C_6H_5C(O)OCH_3$	$(CH_3)_3CO$.	Liq. phase	49.9	43.4	14.28	6.3	1
$C_6H_5C(O)OCH_2C_6H_5$	$(CH_3)_3CO$.	Liq. phase	87.9	27.3	13.77	-2.7	1

are given in Table 2. The activation energy was calculated using the value of the reaction rate constant k, in this case the pre-exponential factor $A=4\cdot 10^9$ L mol⁻¹ s⁻¹ for reactions with the C—H bond of aliphatic compounds, and $A=4\cdot 10^8$ L mol⁻¹ s⁻¹ for reactions with olefins, ketones, alkylaromatic compounds and acids (the C—H bond of the acid residue). In the liquid phase the collision rate of the reagents is higher due to the small free volume and, as a result, the pre-exponential factor was multiplied by a coefficient equal to 5 (see

Ref. 10), $A_{lph} = 5A_{gph}/= 2 \cdot 10^{10} \text{ L mol}^{-1} \text{ s}^{-1})$ for the reaction of HO with one aliphatic C-H bond. The coefficient α for this reaction is equal to $(b_i/b_f) = 0.79$.

As can be seen from the results given in Table 2, the reactions of hydroxyl with paraffin hydrocarbons of various structures in the gas and liquid phases are characterized by the same parameter, $br_e = 13.58 \pm 0.17$ (kJ mol⁻¹)^{1/2}, for reactions of OH with toluene $br_e = 15.08$, and with cyclohexane $br_e = 15.14$. The ΔE_{μ} value for some reactions is more than zero, for others less than

Table 4. Contribution of the polar effect (ΔE_{μ}) to the activation energy of reactions of radicals having a free valence on oxygen with oxygen-containing compounds in the gas phase

RH	ΔE_{μ}				
	0	HO.	CH ₃ O.	(CH ₃) ₃ CO.	
CH ₃ OH	4.6	2.4	-6.0		
(CH ₃) ₂ CHOH	-8.8	-1.3	_		
CH ₂ O	-4.6	1.8	0	-4.2	
RCHO	-7.9	1.5	-12.2	-3.1	
CH ₃ COCH ₃	-9.4	-11.4		-17.8	
R'CH ₂ COR"	-15.6	-9.3		_	
$(CH_3)_2^2O$	-5.1	2.8		_	
R'CH ₂ OR"	-6.7	-1.4			
CH ₃ COOCH ₂ R'	0	6.6		_	

Table 5. The effect of solvation and its contribution ΔE_{solv} to the activation energy of the HO (RO) + RH reaction

RH	ΔE_{μ}^{a} (Gas phase)	ΔE_{μ}^{a} (Liq. phase) ΔE_{solv}^{a}	
CH ₃ OH	2.4	6.6	4.2	
CH ₃ CH ₂ OH	-1.3	4.4	5.7	
(CH ₃),ĆHOH	-2.7	5.3	8.0	
$(CH_3)_3^2COH$	-2.0	5.4	7.4	
CH ₃ OCH ₃	2.8	10.6	7.8	
(CH ₃ CH ₂) ₂ O	-1.4	7.2	8.6	
CH ₂ O	1.8	13.2	11.4	
CH ₃ CHO	1.5	13.2	11.7	
CH ₃ COCH ₃	-11.4	-5.9	5.5	
CH ₃ COOCH ₃	6.6	13.1	6.5	
CH_3OH^b	-6.0	0.7	6.7	
$CH_3^3COCH_3^c$	-17.8	-10.6	7.2	

 a Values are given in kJ mol $^{-1}$. b Reaction with CH $_3$ O', CH $_3$ OH (Liq. phase). c Reaction with (CH $_3$) $_3$ CO', CH $_3$ COCH $_3$ (Liq. phase).

zero (see Table 2), *i.e.*, polar interaction in some cases results in a decrease and in other cases in an increase in the activation energy of the reaction. The strongest effect of the polar interaction is felt in the attack of hydroxyl on ketones and aldehydes.

The effect of multidipole interaction ¹¹ and its dependence on the distance between the alcohol groups (where the weaker C—H bond is attacked) can be seen from a comparison of ΔE_{μ} for diols in H₂O. The more methyl groups separating the two alcohol groups, the smaller ΔE_{μ} (kJ mol⁻¹):

RH	$\Delta \pmb{E}_{\pmb{\mu}}$
CH ₃ (CHOH) ₂ CH ₃	8.6
CH ₂ OH(CH ₂) ₂ CH ₂ OH	4.9
CH ₂ OH(CH ₂) ₃ CH ₂ OH	4.5

The analysis of kinetic data on the reactions of alkoxyl radicals with hydrocarbons has been analyzed previously.¹² In this work we calculated br_e for the reactions of alkoxyl radicals with oxygen-containing com-

pounds in the liquid phase as well as in the gas phase. The rate constants were taken from Refs. 6, 13, the energies of the bond dissociation — from Refs. 7, 8. Coefficient $\alpha = (b_i/b_f) = 0.80$ (see Ref. 12). The preexponential factor A for the reaction of RO with one C-H bond of an aliphatic compound in the liquid phase amounts 10⁹ L mol⁻¹ s⁻¹, while that in the gas phase is as high as 2×108; for the reactions of RO with unsaturated, alkylaromatic compounds, ketones, acids and esters (acid residue) A was less by a factor of 10. It follows from the data of Table 3 that the polar interaction significantly decreases the activation barrier in reactions of RO with ketones (comparison parameter $br_{eRH}=14.41$), with aldehydes ($br_{eRH}=13.54$), and with aromatic alcohols ($br_{eRH}=14.08$). The polar interaction has little effect on the activation energy of the reactions of aliphatic alcohols, ethers, acetals, and cyclic ethers ($br_{eRH} = 13.54$).

It is appropriate to compare the value of the polar effect in reactions of the radicals having a free valence on oxygen with different classes of organic compounds, and average the value of the activation energy for structurally similar compounds in Table 4.

As can be seen from the results given in Table 4, the contribution of the polar effect to the activation energy can be positive or negative depending on the radical (atom) attacking the polar molecule as well as on the functional group in the reagent molecule; in some cases, the contribution is equal to zero. It is observed to be most efficient in the reactions of radicals with ketones and aldehydes. The contribution of the polar interaction differs in the gas and liquid phases for the same reaction (see Tables 3, 4). Since both the transition state and the reagents are solvated in polar solvents (water), this difference should be explained by the superposition of two effects in the liquid phase: polar interaction and solvation. It is possible to estimate the contribution of solvation to activation energy ΔE_{solv} by comparing ΔE_{u} for these two phases and defining it as the difference $\Delta E_{solv} = (\Delta E)_{lph} - (\Delta E)_{gph}$. From a comparison of ΔE_{μ} in the gas and liquid phases it follows (Table 5) that the transfer of the reaction from the gas phase into the liquid phase in all cases is accompanied by an increase in the activation energy, and ΔE_{solv} ranges from 4 to 11 kJ mol⁻¹ s⁻¹; the maximum value is observed for the reaction of hydroxyl with aldehydes. For the reaction of hydroxyl with hydrocarbons, as indicated earlier, br_e in the gas and liquid phases are close, and ΔE_{solv} = 0±0.15 kJ mol⁻¹. Apparently, the difference between the solvation energies of the attacking molecule and the transition state makes the main contributes to ΔE_{solv} .

References

 N. M. Emanuel', T. E. Zaikov, and Z. K. Maizus, Rol' sredy v radikal'no-tsepnykh reaktsiyakh okisleniya organicheskikh coedinenii [Role of the Medium in Radicalchain Reactions of Oxidation of Organic Compounds], Nauka, Moscow, 1973, 279 (in Russian).

- E. T. Denisov, N. I. Mitzkevich, and V. A. Agabekov, Mekhanizm zhidkofaznogo okisleniya kislorodcoderzhashchikh coedineniy [Mechanism of Liquid Phase Oxidation of Oxygen-containing Compounds], Minsk, Nauka i Tekhnika, 1975, 334 (in Russian).
- E. T. Denisov, Kinet. Katal., 1991, 32, 461 [Kinet. Catal., 1991, 32 (Engl. Transl.)].
- 4. E. T. Denisov, Mendeleev Commun., 1992, 2, 1.
- E. T. Denisov and T. G. Denisova, *Kinet. Katal.*, 1993,
 in press [Kinet. Catal., 1993, 34 (Engl. Transl.)].
- NIST Chemical Kinetics Database, 2.0. Version, National Institute of Standards and Technology, Gaithersburg, Maryland, 1990.
- 7. D. F. Memillen and D. M. Golden, Ann. Rev. Phys. Chem., 1982, 33, 493.
- 8. E. T. Denisov, Zh. Fiz. Khim. 1993, 67, in press [Russ. J.

- Phys. Chem., 1993, 67 (Engl. Transl.)].
- 9. G.V.Buxton, C. L. Greenstock, W. P. Helman, and A. B. Ross., J. Phys. Chem. Reference Data., 1988, 17, 676.
- E. T. Denisov, Zh. Fiz. Khim., 1975, 49, 2473 [J. Phys. Chem., 1975, 49 (Engl. Transl.)].
- E. T. Denisov, Usp. Khim., 1985, 54, 1466 [Russ. Chem. Rev., 1985, 54 (Engl. Transl.)].
- 12 E. T. Denisov and T. G. Denisova, Zh. Fiz. Khim., 1991, 65, 1208 [J. Phys. Chem., 1991, 65 (Engl. Transl.)].
- 13 E. T. Denisov, E. T. Tumanov, T. G. Denisova, T. I. Drozdova, and T. S. Pokidova, Realizatsiya banka kineticheskikh dannykh radikal'nykh zhidkophaznykh reaktsii na IBM PC/AT [Realization of a Bank of Kinetic Rate Constants of Radical Liquid Phase Reactions on an IBM PC/AT (preprint)], Chernogolovka, 1992, 58 (in Russian).

Received June 21, 1993